GATE Metallurgical Engineering Syllabus 2019 – GATE MT Chapters & Topics

0

GATE Metallurgical Engineering Syllabus : Check out the latest GATE Syllabus for Metallurgical Engineering (MT). Metallurgical subject is the one of the papers in GATE 2019 Exam. Earlier we’ve provided GATE Exam pattern 2019, Now we are providing GATE Syllabus 2019 of Metallurgical Paper. MT is the subject code of GATE Metallurgical Engineering Exam. Below we’ve provided GATE Metallurgical Engineering Syllabus and weight-age for GATE 2019 Exam. Here you can see Metallurgical Engineering applicable chapters and topics for GATE exam 2019.

GATE Paper Pattern & Marks Weightage

GATE paper questions are divided into three sections.  As given below GATE marks are distributed for each section. 70% of the marks covers the core subject of the GATE Exam. i.e here Core Subject is Metallurgical Engineering.

GATE 2018 – 2019
Paper Pattern for Metallurgical Engineering (MT)

GATE Paper SectionsGATE Marks Distribution
Subject Questions (Core Subject)70% of the total marks.
Engineering Mathematics15% of the total marks.
General Aptitude (GA)15% of the total marks.

GATE Metallurgical Engineering Syllabus

The GATE exam will also have General Aptitude section. General Aptitude section is common for all papers. You can download the GATE 2019 Syllabus for General Aptitude (GA) in PDF or you can check

GATE General Aptitude (GA) Syllabus (Full Details)

GATE 2019  Syllabus pdf

GATE Metallurgical Engineering Syllabus

General Aptitude Syllabus (Common to all papers)Download
GATE Syllabus for Metallurgical Engineering (MT)Download

 

ENGINEERING MATHEMATICS

📢 Get Latest Exam Updates via E-mail ✉

Note : Submit your name, email, state and updates category below.
  • This field is for validation purposes and should be left unchanged.

Linear Algebra: Matrices and Determinants, Systems of linear equations, Eigen values and Eigen vectors.

Calculus: Limit, continuity and differentiability; Partial Derivatives; Maxima and minima; Sequences and series; Test for convergence; Fourier series.

Vector Calculus: Gradient; Divergence and Curl; Line; surface and volume integrals; Stokes, Gauss and Green’s theorems.

Diferential Equations: Linear and non-linear first order ODEs; Higher order linear ODEs with constant coefficients; Cauchy’s and Euler’s equations; Laplace transforms; PDEs –Laplace, heat and wave equations.

Probability and Statistics: Mean, median, mode and standard deviation; Random variables; Poisson, normal and binomial distributions; Correlation and regression analysis.

Numerical Methods: Solutions of linear and non-linear algebraic equations; integration of trapezoidal and Simpson’s rule; single and multi-step methods for differential equations.

METALLURGICAL ENGINEERING

Thermodynamics and Rate Processes: Laws of thermodynamics, activity, equilibrium constant, applications to metallurgical systems, solutions, phase equilibria, Ellingham and phase stability diagrams, thermodynamics of surfaces, interfaces and defects, adsorption and segregation; basic kinetic laws, order of reactions, rate constants and rate limiting steps; principles of electro chemistry- single electrode potential, electro-chemical cells and polarizations, aqueous corrosion and protection of metals, oxidation and high temperature corrosion – characterization and control; heat transfer – conduction, convection and heat transfer coefficient relations, radiation, mass transfer – diffusion and Fick’s laws, mass transfer coefficients; momentum transfer – concepts of viscosity, shell balances, Bernoulli’s equation, friction factors.

Extractive Metallurgy: Minerals of economic importance, comminution techniques, size classification, Flotation, gravity and other methods of mineral processing; agglomeration, pyrohydro- and electro-metallurgical processes; material and energy balances; principles and processes for the extraction of non-ferrous metals – aluminium, copper, zinc, lead, magnesium, nickel, titanium and other rare metals; iron and steel making – principles, role structure and properties of slags, metallurgical coke, blast furnace, direct reduction processes, primary and secondary steel making, ladle metallurgy operations including deoxidation, desulphurization, sulphide shape control, inert gas rinsing and vacuum reactors; secondary refining processes including AOD, VAD, VOD, VAR and ESR; ingot and continuous casting; stainless steel making, furnaces and refractories.

Physical Metallurgy: Crystal structure and bonding characteristics of metals, alloys, ceramics and polymers, structure of surfaces and interfaces, nano-crystalline and amorphous structures; solid solutions; solidification; phase transformation and binary phase diagrams; principles of heat treatment of steels, cast iron and aluminum alloys; surface treatments; recovery, recrystallization and grain growth; industrially important ferrous and non-ferrous alloys; elements of X-ray and electron diffraction; principles of scanning and transmission electron microscopy; industrial ceramics, polymers and composites; electronic basis of thermal, optical, electrical and magnetic properties of materials; electronic and opto-electronic materials.

Mechanical Metallurgy: Elasticity, yield criteria and plasticity; defects in crystals; elements of dislocation theory – types of dislocations, slip and twinning, source and multiplication of dislocations, stress fields around dislocations, partial dislocations, dislocation interactions and reactions; strengthening mechanisms; tensile, fatigue and creep behaviour; super-plasticity; fracture – Griffith theory, basic concepts of linear elastic and elasto-plastic fracture mechanics, ductile to brittle transition, fracture toughness; failure analysis; mechanical testing – tension, compression, torsion, hardness, impact, creep, fatigue, fracture toughness and formability.

Manufacturing Processes: Metal casting – patterns and moulds including mould design involving feeding, gating and risering, melting, casting practices in sand casting, permanent mould casting, investment casting and shell moulding, casting defects and repair; hot, warm and cold working of metals, Metal forming – fundamentals of metal forming processes of rolling, forging, extrusion, wire drawing and sheet metal forming, defects in forming; Metal joining – soldering, brazing and welding, common welding processes of shielded metal arc welding, gas metal arc welding, gas tungsten arc welding and submerged arc welding; welding metallurgy, problems associated with welding of steels and aluminium alloys, defects in welded joints; powder metallurgy; NDT using dye-penetrant, ultrasonic, radiography, eddy current, acoustic emission and magnetic particle methods.

Leave A Reply

Your email address will not be published.