# GATE Production and Industrial Engineering Syllabus & GATE PI: 2021

Check out the latest GATE Syllabus for Production and Industrial Engineering (PI). Production and Industrial Engineering is one of the papers in GATE 2021 Exam. Earlier we’ve provided GATE Exam pattern 2021, Now we are providing GATE Syllabus 2024 of Chemistry Paper. PI is the subject code of GATE Production and Industrial Engineering Exam. Below we’ve provided GATE Production and Industrial Engineering Syllabus and weightage for GATE 2021 Exam. Here you can see Production and Industrial Engineering applicable chapters and topics for GATE exam 2021.

## GATE Paper Pattern & Marks Weightage

GATE paper questions are divided into three sections.  As given below GATE marks are distributed for each section. 70% of the marks covers the core subject of the GATE Exam. i.e here Core Subject is Production and Industrial Engineering.

GATE 2018 – 2021 Paper Pattern for Production and Industrial Engineering (PI)

 GATE Paper Sections GATE Marks Distribution Subject Questions (Core Subject) 70% of the total marks. Engineering Mathematics 15% of the total marks. General Aptitude (GA) 15% of the total marks.

## GATE Production and Industrial Engineering Syllabus (PI)

The GATE exam will also have General Aptitude section. General Aptitude section is common for all papers. You can download the GATE 2021 Syllabus for General Aptitude (GA) in PDF or you can check

GATE GENERAL APTITUDE (GA) SYLLABUS (FULL DETAILS)

GATE Production and Industrial Engineering Syllabus pdf 2021

 General Aptitude Syllabus (Common to all papers) Download GATE Syllabus for Production and Industrial Engineering (PI) Download

### Section 1: Engineering Mathematics

Linear Algebra: Matrices and Determinants, Systems of linear equations, Eigen values and eigen vectors.

Calculus:Limit, continuity and differentiability; partial derivatives; maxima and minima; sequences and series; tests for convergence; Fourier series, Taylor series.

Vector Calculus: Gradient; divergence and curl; line; surface and volume integrals; Stokes, Gauss and Green’s theorems.

Differential Equations: Linear and non-linear first order Ordinary Differential Equations (ODE); Higher order linear ODEs with constant coefficients; Cauchy’s and Euler’s equations; Laplace transforms; Partial Differential Equations – Laplace, heat and wave equations

Probability and Statistics: Mean, median, mode and standard deviation; random variables; Poisson, normal and binomial distributions; correlation and regression analysis; tests of significance, analysis of variance (ANOVA).

Numerical Methods: Solutions of linear and nonlinear algebraic equations; numerical integration – trapezoidal and Simpson’s rule; numerical solutions of ODE.

### Section 2: General Engineering

Engineering Materials: Structure and properties correlation; engineering materials (metals, ceramics, polymers, and composites) – properties and applications; stress strain behavior of metals and alloys;iron-carbon phase diagram, heat treatment of metals and alloys, its influence on mechanical properties.

Applied Mechanics: Engineering mechanics – equivalent force systems, free body concepts, equations of equilibrium; trusses; the strength of materials – stress, strain and their relationship; failure theories, Mohr’s circle(stress), deflection of beams, bending and shear stress, Euler’s theory of columns.

Theory of Machines and Design: Analysis of planar mechanisms, cams, and followers; governors and fly wheels; design of bolted, riveted and welded joints; interference/shrink fit joints; design of shafts, keys, spur gears, belt drives, brakes and clutches; pressure vessels.

Thermal and Fluids Engineering: Fluid mechanics – fluid statics, Bernoulli’s equation, flow through pipes, equations of continuity and momentum, capillary action, contact angle and wetting; thermodynamics – zeroth, first and second law of thermodynamics, thermodynamic system and processes, calculation of work and heat for systems and control volumes; air standard cycles; heat transfer – basic applications of conduction, convection and radiation.

### Section 3: Manufacturing Processes I

Casting: types of casting processes and applications; patterns – types and materials; allowances; moulds and cores – materials, making, and testing; casting techniques of cast iron, steels and nonferrous metals and alloys; analysis of solidification and microstructure development; design of gating and riser; origin of defects.

Metal Forming: Stress-strain relations in elastic and plastic deformation; the concept of flow stress; hot and cold working – forging, rolling, extrusion and wire drawing; sheet metal working processes – blanking, bending and deep drawing; ideal work and slab analysis; origin of metal working defects.

Joining of materials: Principles of fusion welding processes(manual metal arc, MIG, TIG, plasma arc, submerged arc welding processes)–different heat sources (flame, arc, resistive, laser, electron beam), and heat transfer and associated losses, flux application, feeding of filler rod; Principles of solid state welding processes (friction, explosive welding, ultrasonic welding processes); Principles of adhesive, brazing and soldering processes; Origins of welding defects.

Powder processing: Production of metal/ceramic powders, compaction, and sintering of metals and ceramic powders.

Polymers and Composites: Plastic processing – injection, compression and blow molding, extrusion, calendaring and thermoforming; molding of composites.

### Section 4: Manufacturing Processes II

Machine Tools and Machining: Basic machine tools like centre lathe, milling machine, and drilling machine – construction and kinematics; machining processes – turning, taper turning, thread cutting, drilling, boring, milling, gear cutting, thread production, grinding; geometry of single point cutting tools, chip formation, cutting forces, specific cutting energy and power requirements, Merchant’s analysis; basis of selection of machining parameters; tool materials, tool wear and tool life, economics of machining, thermal aspects of machining, cutting fluids, machinability; Jigs and fixtures – principles, applications, and design.

Non-traditional Manufacturing: Principles, applications, effect of process parameters on MRR and product quality of non-traditional machining processes – USM, AJM, WJM, AWJM, EDM, and Wire cut EDM, LBM, EBM, PAM, CHM, ECM.

Computer Integrated Manufacturing: Basic concepts of CAD – geometric modeling, CAM – CNC and robotics – configurations, drives and controls, Group Technology and its applications – CAPP, cellular manufacturing, and FMS.

### Section 5: Quality and Reliability

Metrology and Inspection: Limits, fits, and tolerances, gauge design, interchangeability, selective assembly; linear, angular, and form measurements(straightness, squareness, flatness, roundness, and cylindricity) by mechanical and optical methods; inspection of screw threads and gears; surface finish measurement by contact and non-contact methods;tolerance analysis in manufacturing and assembly.

Quality management: Quality – concept, and costs; quality assurance; statistical quality control, acceptance sampling, zero defects, six sigma; total quality management; ISO 9000.

Reliability and Maintenance: Reliability, availability, and maintainability; distribution of failure and repair times; determination of MTBF and MTTR, reliability models; determination of system reliability; preventive maintenance and replacement.

### Section 6: Industrial Engineering

Product Design and Development: Principles of good product design, tolerance design; quality and cost considerations; product life cycle; standardization, simplification, diversification, value engineering and analysis, concurrent engineering; comparison of production alternatives.

Work System Design: Taylor’s scientific management, Gilbreths’s contributions; productivity – concepts and measurements; method study, micro-motion study, principles of motion economy; work measurement –time study, work sampling, standard data, PMTS; ergonomics; job evaluation, merit rating, incentive schemes, and wage administration.

Facility Design: Facility location factors and evaluation of alternate locations; types of plant layout and their evaluation; computer aided layout design techniques; assembly line balancing; materials handling systems.

### Section 7: Operations research and Operations management

Operation Research: Linear programming – problem formulation, simplex method, duality and sensitivity analysis; transportation and assignment models; network flow models, constrained optimization and Lagrange multipliers; Markovian queuing models; dynamic programming; simulation – manufacturing applications.

Engineering Economy and Costing: Elementary cost accounting and methods of depreciation; break-even analysis, techniques for evaluation of capital investments, financial statements, time-cost trade-off, resource leveling.

Production control: Forecasting techniques – causal and time series models, moving average, exponential smoothing, trend and seasonality; aggregate production planning; master production scheduling; MRP and MRP-II; routing, scheduling and priority dispatching; Push and pull production systems, concept of JIT manufacturing system; Logistics, distribution, and supply chain management; Inventory – functions, costs, classifications, deterministic inventory models, quantity discount; perpetual and periodic inventory control systems.

Project management – PERT and CPM.

In this article, we are providing the necessary information about the GATE exam pattern and gives the GATE Production and Industrial Engineering Syllabus.