# GATE Biotechnology Engineering Syllabus 2022 – BT Topics, Latest Changes

GATE Biotechnology Engineering Syllabus 2022 :Check out the latest GATE Syllabus for Biotechnology Engineering (BT). Biotechnology subject is the one of the papers in GATE 2021 Exam. Earlier we’ve provided GATE Exam pattern 2021, Now we are providing GATE Syllabus 2022 of Biotechnology Paper. BT is the subject code of GATE Biotechnology Engineering Exam. Below we’ve provided GATE Biotechnology Engineering Syllabus and weight-age for GATE 2021 Exam. Here you can see Biotechnology Engineering applicable chapters and topics for GATE exam 2021. Download GATE Biotechnology Engineering Syllabus 2022 PDF is also available here.

## GATE Paper Pattern & Marks Weightage

GATE paper questions are divided into three sections.  As given below GATE marks are distributed for each section. 70% of the marks covers the core subject of the GATE Exam. i.e here Core Subject is Biotechnology Engineering.

GATE 2018 – 2021
Paper Pattern for Biotechnology Engineering (BT)

 GATE Paper Sections GATE Marks Distribution Subject Questions (Core Subject) 70% of the total marks. Engineering Mathematics 15% of the total marks. General Aptitude (GA) 15% of the total marks.

### GATE Biotechnology Engineering Syllabus(BT)

The GATE exam will also have General Aptitude section. General Aptitude section is common for all papers. You can download the GATE 2021 Syllabus for General Aptitude (GA) in PDF or you can check

GATE General Aptitude (GA) Syllabus (Full Details)

### Engineering Mathematics

Linear Algebra: Matrices and Determinants, Systems of linear equations, Eigen values and eigen vectors.

Calculus:Limit, continuity and differentiability; partial derivatives; maxima and minima; sequences and series; tests for convergence; Fourier series, Taylor series.

Vector Calculus:Gradient; divergence and curl; line; surface and volume integrals; Stokes, Gauss and Green’s theorems.

Differential Equations:Linear and non-linear first order Ordinary Differential Equations (ODE); Higher order linear ODEs with constant coefficients; Cauchy’s and Euler’s equations; Laplace transforms; Partial Differential Equations – Laplace, heat and wave equations

Probability and Statistics:Mean, median, mode and standard deviation; random variables; Poisson, normal and binomial distributions; correlation and regression analysis; tests of significance, analysis of variance (ANOVA).

Numerical Methods: Solutions of linear and non-linear algebraic equations; numerical integration – trapezoidal and Simpson’s rule; numerical solutions of ODE.

### General Biotechnology

Biochemistry: Biomolecules-structure and functions; Biological membranes, structure, action potential and transport processes; Enzymes- classification, kinetics and mechanism of action; Basic concepts and designs of metabolism (carbohydrates, lipids, amino acids and nucleic acids) photosynthesis, respiration and electron transport chain; Bioenergetics.

Microbiology: Viruses- structure and classification; Microbial classification and diversity(bacterial, algal and fungal); Methods in microbiology; Microbial growth and nutrition; Aerobic and anaerobic respiration; Nitrogen fixation; Microbial diseases and host-pathogen interaction.

Cell Biology: Prokaryotic and eukaryotic cell structure; Cell cycle and cell growth control; Cell-Cell communication, Cell signaling and signal transduction.

Molecular Biology and Genetics: Molecular structure of genes and chromosomes; Mutations and mutagenesis; Nucleic acid replication, transcription, translation and their regulatory mechanisms in prokaryotes and eukaryotes; Mendelian inheritance; Gene interaction; Complementation; Linkage, recombination and chromosome mapping; Extra chromosomal inheritance; Microbial genetics (plasmids, transformation, transduction, conjugation); Horizontal gene transfer and Transposable elements; RNA interference; DNA damage and repair; Chromosomal variation; Molecular basis of genetic diseases Analytical Techniques: Principles of microscopy-light, electron, fluorescent and confocal; Centrifugation- high speed and ultra; Principles of spectroscopy-UV, visible, CD, IR, FTIR, Raman, MS,NMR; Principles of chromatography- ion exchange, gel filtration, hydrophobic interaction, affinity, GC,HPLC, FPLC; Electrophoresis; Microarray.

Immunology: History of Immunology; Innate, humoral and cell mediated immunity; Antigen; Antibody structure and function; Molecular basis of antibody diversity; Synthesis of antibody and secretion; Antigen-antibody reaction; Complement; Primary and secondary lymphoid organ; B and T cells and macrophages; Major histocompatibility complex (MHC); Antigen processing and presentation; Polyclonal and monoclonal antibody; Regulation of immune response; Immune tolerance; Hypersensitivity; Autoimmunity; Graft versus host reaction.

Bioinformatics: Major bioinformatic resources and search tools; Sequence and structure databases; Sequence analysis (biomolecular sequence file formats, scoring matrices, sequence alignment, phylogeny);Data mining and analytical tools for genomic and proteomic studies; Molecular dynamics and simulations (basic concepts including force fields, protein-protein, protein-nucleic acid, protein-ligand interaction).

Recombinant DNA Technology

Restriction and modification enzymes; Vectors; plasmid, bacteriophage and other viral vectors, cosmids, Ti plasmid, yeast artificial chromosome; mammalian and plant expression vectors; cDNA and genomic DNA library; Gene isolation, cloning and expression ; Transposons and gene targeting; DNA labeling; DNA sequencing; Polymerase chain reactions; DNA fingerprinting; Southern and northern blotting; In-situ hybridization; RAPD, RFLP; Site-directed mutagenesis; Gene transfer technologies; Gene therapy

Section 6: Plant And Animal Biotechnology

Plants: Totipotency; Regeneration of plants; Plant growth regulators and elicitors; Tissue culture and cell suspension culture system – methodology, the kinetics of growth and nutrient optimization; production of secondary metabolites; Hairy root culture; Plant products of industrial importance; Artificial seeds; Somaclonal methods of gene transfer techniques; Selection marker and reporter gene; Plastid transformation.

Microbes: Production of biomass and primary/secondary metabolites – Biofuels, bioplastics, industrial enzymes, antibiotics; Large scale production and purification of recombinant proteins and metabolites; Clinical, food, and industrial microbiology; Screening strategies for new products.

Animals: Culture media composition and growth conditions; Animal cell and tissue preservation; Anchorage and non-anchorage dependent cell culture; Kinetics of cell growth; Micro & macro-carrier culture; Hybridoma technology; Stem cell technology; Animal cloning; Transgenic animals; Knock-out and Knock-in animals.

Section 7: Bioprocess Engineering And Process Biotechnology

Bioreaction engineering: Rate law, zero and first order kinetics; Ideal reactors – batch, mixed flow, and plug flow; Enzyme immobilization, diffusion effects – Thiele modulus, effectiveness factor, Damkoehler number; Kinetics of cell growth; substrate utilization and product formation; Structured and unstructured modes; Batch, fed-batch and continuous process; Microbial and enzyme reactors; Optimization and scale-up.

Upstream and Downstream processing: Media formulation and optimization; Sterilization of air and media; Filtration – membrane filtration; ultrafiltration; Centrifugation – high speed and ultra; Cell disruption; Principles of chromatography ion exchange, gel filtration, hydrophobic interaction, affinity, Gc, HPLC, and FPLC;

Instrumentation and Process Control: Pressure, temperature, and flow measurement devices; Valves; First-order and second-order systems; Feedback and feedforward control; Types of controllers – proportional, derivative and integral control, tuning of controllers.

Till now we have been covered the overall syllabus of the GATE Biotechnology Engineering Syllabus 2022. So, for any queries regarding the paper mention them in below comments section.