GATE Instrumentation Engineering Syllabus 2019 – GATE IN Chapters & Topics

0

GATE Instrumentation Engineering Syllabus 2019 : Check out the latest GATE Syllabus for Instrumentation Engineering (IN). Instrumentation subject is the one of the papers in GATE 2019 Exam. Earlier we’ve provided GATE Exam pattern 2019, Now we are providing GATE Syllabus 2019 of Instrumentation Paper. IN is the subject code of GATE Instrumentation Engineering Exam. Below we’ve provided GATE Instrumentation Engineering Syllabus and weight-age for GATE 2019 Exam. Here you can see Instrumentation Engineering applicable chapters and topics for GATE exam 2019.

GATE Paper Pattern & Marks Weightage

GATE paper questions are divided into three sections.  As given below GATE marks are distributed for each section. 70% of the marks covers the core subject of the GATE Exam. i.e here Core Subject is Instrumentation Engineering.

GATE 2018 – 2019
Paper Pattern for Instrumentation Engineering (IN)

GATE Paper SectionsGATE Marks Distribution
Subject Questions (Core Subject)70% of the total marks.
Engineering Mathematics15% of the total marks.
General Aptitude (GA)15% of the total marks.

GATE Syllabus for Instrumentation Engineering (IN)

The GATE exam will also have General Aptitude section. General Aptitude section is common for all papers. You can download the GATE 2019 Syllabus for General Aptitude (GA) in PDF or you can check

GATE General Aptitude (GA) Syllabus (Full Details)

GATE 2019 Syllabus pdf

GATE Instrumentation Engineering Syllabus

General Aptitude Syllabus (Common to all papers)Download
GATE Syllabus for Instrumentation Engineering (IN)Download

 

Instrumentation Engineering Section 1: Engineering Mathematics

Linear Algebra: Matrix algebra, systems of linear equations, Eigen values and Eigen vectors.

Calculus: Mean value theorems, theorems of integral calculus, partial derivatives, maxima and minima, multiple integrals, Fourier series, vector identities, line, surface and volume integrals, Stokes, Gauss and Green’s theorems.

Differential equations: First order equation (linear and nonlinear), higher order linear differential equations with constant coefficients, method of variation of parameters, Cauchy’s and Euler’s equations, initial and boundary value problems, and solution of partial differential equations: variable separable method.

Analysis of complex variables: Analytic functions, Cauchy’s integral theorem and integral formula, Taylor’s and Laurent’s series, residue theorem, solution of integrals. Probability and Statistics: Sampling theorems, conditional probability, mean, median, mode and standard deviation, random variables, discrete and continuous distributions: normal, Poisson and binomial distributions.

Numerical Methods: Matrix inversion, solutions of non-linear algebraic equations, iterative methods for solving differential equations, numerical integration, regression and correlation analysis.

Instrumentation Engineering Section 2: Electrical Circuits:

📢 Get Latest Exam Updates via E-mail ✉

Note : Submit your name, email, state and updates category below.
  • This field is for validation purposes and should be left unchanged.

Voltage and current sources: independent, dependent, ideal and practical; v-I relationships of resistor, inductor, mutual inductor and capacitor; transient analysis of RLC circuits with dc excitation.

Kirchoff’s laws, mesh and nodal analysis, superposition, Thevenin, Norton, maximum power transfer and reciprocity theorems.

Peak-, average- and rms values of ac quantities; apparent-, active- and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, locus diagrams, realization of basic filters with R, L and C elements.

One-port and two-port networks, driving point impedance and admittance, open-, and short circuit parameters.

Instrumentation Engineering Section 3: Signals and Systems

Periodic, aperiodic and impulse signals; Laplace, Fourier and z-transforms; transfer function, frequency response of first and second order linear time invariant systems, impulse response of systems; convolution, correlation. Discrete time system: impulse response, frequency response, pulse transfer function; DFT and FFT; basics of IIR and FIR filters.

Instrumentation Engineering Section 4: Control Systems

Feedback principles, signal flow graphs, transient response, steady-state-errors, Bode plot, phase and gain margins, Routh and Nyquist criteria, root loci, design of lead, lag and lead-lag compensators, state-space representation of systems; time-delay systems; mechanical, hydraulic and pneumatic system components, synchro pair, servo and stepper motors, servo valves; on-off, P, P-I, P-I-D, cascade, feedforward, and ratio controllers.

Instrumentation Engineering Section 5: Analog Electronics

Characteristics and applications of diode, Zener diode, BJT and MOSFET; small signal analysis of transistor circuits, feedback amplifiers. Characteristics of operational amplifiers; applications of opamps: difference amplifier, adder, subtractor, integrator, differentiator, instrumentation amplifier, precision rectifier, active filters and other circuits. Oscillators, signal generators, voltage controlled oscillators and phase locked loop.

Instrumentation Engineering Section 6: Digital Electronics

Combinational logic circuits, minimization of Boolean functions. IC families: TTL and CMOS.

Arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flip-flops, shift registers, timers and counters; sample-and-hold circuit, multiplexer, analog-to- digital (successive approximation, integrating, flash and sigma-delta) and digital-to- analog converters (weighted R, R-2R ladder and current steering logic). Characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/settling time); basics of number systems, 8-bit microprocessor and microcontroller: applications, memory and input-output interfacing; basics of data acquisition systems.

Instrumentation Engineering Section 7: Measurements

SI units, systematic and random errors in measurement, expression of uncertainty – accuracy and precision index, propagation of errors. PMMC, MI and dynamometer type instruments; dc potentiometer; bridges for measurement of R, L and C, Q-meter. Measurement of voltage, current and power in single and three phase circuits; ac and dc current probes; true rms meters, voltage and current scaling, instrument transformers, timer/counter, time, phase and frequency measurements, digital voltmeter, digital multimeter; oscilloscope, shielding and grounding.

Instrumentation Engineering Section 8: Sensors and Industrial Instrumentation

Resistive-, capacitive-, inductive-, piezoelectric-, Hall effect sensors and associated signal conditioning circuits; transducers for industrial instrumentation: displacement (linear and angular), velocity, acceleration, force, torque, vibration, shock, pressure (including low pressure), flow (differential pressure, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters) temperature (thermocouple, bolometer, RTD (3/4 wire),thermistor, pyrometer and semiconductor); liquid level, pH, conductivity and viscosity measurement.

Instrumentation Engineering Section 9: Communication and Optical Instrumentation

Amplitude- and frequency modulation and demodulation; Shannon’s sampling theorem, pulse code modulation; frequency and time division multiplexing, amplitude-, phase-, frequency-, pulse shift keying for digital modulation; optical sources and detectors: LED, laser, photo-diode, light dependent resistor and their characteristics; interferometer: applications in metrology; basics of fiber optic sensing.

Leave A Reply

Your email address will not be published.