GATE Electrical Engineering Syllabus 2024 – EE Chapters & Topics

GATE Electrical Engineering Syllabus 2024: Check out the latest GATE Syllabus for Electrical Engineering (EE). The electrical subject is one of the papers in the GATE 2022 Exam. Earlier we’ve provided the GATE Exam pattern 2022, Now we are providing the GATE Syllabus 2024 of Electrical Paper. EE is the subject code of the GATE Electrical Engineering Exam. Below we’ve provided GATE Electrical Engineering Syllabus and weight-age for the GATE 2022 Exam. Here you can see Electrical Engineering applicable chapters and topics for GATE exam 2022.

GATE Paper Pattern & Marks Weightage

GATE paper questions are divided into three sections.  As given below GATE marks are distributed for each section. 70% of the marks cover the core subject of the GATE Exam. i.e here Core Subject in Electrical Engineering.

GATE 2018 – 2022
Paper Pattern for Electrical Engineering (EE)

GATE Paper Sections GATE Marks Distribution
Subject Questions (Core Subject) 70% of the total marks.
Engineering Mathematics 15% of the total marks.
General Aptitude (GA) 15% of the total marks.

GATE Electrical Engineering Syllabus (EE)

The GATE exam will also have a General Aptitude section. The General Aptitude section is common for all papers. You can download the GATE 2021 Syllabus for General Aptitude (GA) in PDF or you can check

GATE General Aptitude (GA) Syllabus (Full Details)

GATE 2022 Syllabus pdf

GATE Electrical Engineering Syllabus (EE)

General Aptitude Syllabus (Common to all papers) Download
GATE Syllabus for Electrical Engineering (EE) Download

 

Electrical Engineering Section 1: Engineering Mathematics

Linear Algebra: Matrix Algebra, Systems of linear equations, Eigenvalues, Eigenvectors.

Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes’s theorem, Gauss’s theorem, Green’s theorem.

Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy’s equation, Euler’s equation, Initial, and boundary value problems, Partial Differential Equations, Method of separation of variables.

Complex variables: Analytic functions, Cauchy’s integral theorem, Cauchy’s integral formula, Taylor series, Laurent series, Residue theorem, Solution integrals. Probability and Statistics: Sampling theorems, Conditional probability, Mean, Median, Mode, Standard Deviation, Random variables, Discrete and Continuous distributions, Poisson distribution, Normal distribution, Binomial distribution, Correlation analysis, Regression analysis.

Numerical Methods: Solutions of nonlinear algebraic equations, Single and Multi‐step methods for differential equations.

Transform Theory: Fourier Transform, Laplace Transform, z‐Transform.

 Electrical Engineering Section 2: Electric Circuits

Network graph, KCL, KVL, Node and Mesh analysis, Transient response of dc and ac networks, Sinusoidal steady‐state analysis, Resonance, Passive filters, Ideal current and voltage sources, Thevenin’s theorem, Norton’s theorem, Superposition theorem, Maximum power transfer theorem, Two‐port networks, Three phase circuits, Power and power factor in ac circuits.

Electrical Engineering Section 3: Electromagnetic Fields

Coulomb’s Law, Electric Field Intensity, Electric Flux Density, Gauss’s Law, Divergence, Electric field and potential due to point, line, plane, and spherical charge distributions, Effect of the dielectric medium, Capacitance of simple configurations, Biot‐Savart’s law, Ampere’s law, Curl, Faraday’s law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations.

Electrical Engineering Section 4: Signals and Systems

Representation of continuous and discrete‐time signals, Shifting and scaling operations, Linear Time-Invariant and Causal systems, Fourier series representation of continuous periodic signals, Sampling theorem, Applications of Fourier Transform, Laplace Transform, and z-Transform.

Electrical Engineering Section 5: Electrical Machines

Single-phase transformer: equivalent circuit, phasor diagram, open circuit, and short circuit tests, regulation and efficiency; Three-phase transformers: connections, parallel operation; Auto‐transformer, Electromechanical energy conversion principles, DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, starting and speed control of dc motors; Three-phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Operating principle of single-phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance, regulation and parallel operation of generators, starting of synchronous motor, characteristics; Types of losses and efficiency calculations of electric machines.

Electrical Engineering Section 6: Power Systems

Power generation concepts, ac and dc transmission concepts, Models and performance of transmission lines and cables, Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per‐unit quantities, Bus admittance matrix, Gauss- Seidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over‐current, differential and distance protection; Circuit breakers, System stability concepts, Equal area criterion.

Electrical Engineering Section 7: Control Systems

Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady‐state analysis of linear time invariant systems, Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead‐Lag compensators; P, PI and PID controllers; State space model, State transition matrix.

Electrical Engineering Section 8: Electrical and Electronic Measurements

Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis.

Electrical Engineering Section 9: Analog and Digital Electronics

Characteristics of diodes, BJT, MOSFET; Simple diode circuits: clipping, clamping, rectifiers;

Amplifiers: Biasing, Equivalent circuit and Frequency response; Oscillators and Feedback amplifiers; Operational amplifiers: Characteristics and applications; Simple active filters,

VCOs and Timers, Combinational and Sequential logic circuits, Multiplexer, Demultiplexer, Schmitt trigger, Sample and hold circuits, A/D and D/A converters, 8085Microprocessor: Architecture, Programming and Interfacing.

Electrical Engineering Section 10: Power Electronics

Characteristics of semiconductor power devices: Diode, Thyristor, Triac, GTO, MOSFET,

IGBT; DC to DC conversion: Buck, Boost and Buck-Boost converters; Single and three phase configuration of uncontrolled rectifiers, Line commutated thyristor based converters, Bidirectional ac to dc voltage source converters, Issues of line current harmonics, Power factor, Distortion factor of ac to dc converters, Single phase and three phase inverters, Sinusoidal pulse width modulation.

The candidates can make a bookmark this GATE Electrical Engineering Syllabus 2024. And, for more information about this article contact us through the comments. So, we will get u back.

Exam Updates WhatsApp Channel Join Now
Exam Updates Telegram Channel Join Now

One comment

Leave a Reply

Your email address will not be published. Required fields are marked *